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Abstract—The development of multianalyte sensing schemes by combining indicator-displacement assays with artificial neural network
analysis (ANN) for the evaluation of calcium and citrate concentrations in flavored vodkas is presented. This work follows a previous report
where an array-less approach was used for the analysis of unknown solutions containing the structurally similar analytes, tartrate and malate.
Herein, a two component sensor suite consisting of a synthetic host and the commercially available complexometric dye, xylenol orange,
was created. Differential UV —Visible spectral responses result for solutions containing various concentrations of calcium and citrate. The
quantitation of the relative calcium and citrate concentrations in unknown mixtures of flavored vodka samples was determined through ANN
analysis. The calcium and citrate concentrations in the flavored vodka samples provided by the sensor suite and the ANN methodology
described here are compared to values reported by NMR of the same flavored vodkas. We expect that this multianalyte sensing scheme may

have potential applications for the analysis of other complex fluids.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Instead of using molecular sensors specifically designed to
target one analyte, trends are now shifting towards utilizing
an array of differential sensors responsive to multiple
analytes where the combination of the signals from all the
sensors in the array generates a fingerprint response that is
unique to the composition of the mixture being analyzed.
Despite the explosion of reports in the literature of array-
based systems used for the analysis of multiple components
in an unknown mixture,' =3 the number of research groups
with access to an array platform with which to perform their
analyses is still quite limited. An instrument with much
more visibility and often present in most college under-
graduate laboratories is a UV —Visible spectrophotometer.
We expect that a multianalyte sensing scheme dependent on
the analysis of homogeneous solutions in a UV—Visible
spectrophometer would hold greater potential for utility
among chemists due to the relative availability of this type
of instrumentation.

Recently, we demonstrated simultaneous detection of
two structurally similar analytes, tartrate and malate, via
spectrophotometric analysis of two indicator displacement
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assays utilizing two cross reactive synthetic hosts and two
different indicators.® Application of an artificial neural
network (ANN) allowed for the evaluation of the relative
amounts of each analyte in unknown solutions. The power
behind this simple approach is that it creates multi-analyte
sensing protocols in the absence of an array setting. Despite
the success of this approach, we sought to incorporate two
additional levels of complexity. First, we wanted to further
demonstrate the versatility of this method by extending it to
the use of a cross reactive indicator, that leads to synergistic
binding events between hosts and analytes. Second, we
wanted to employ this method for practical uses through the
analysis of commercially available flavored vodkas.

2. Materials and methods

Reagents. All the solvents used in spectrophotometric
studies were of spectroscopic grade and purchased from
Aldrich. Xylenol orange was obtained from Aldrich and
used without further purification. Calcium nitrate was
obtained from Fisher Scientific and used without further
purification. Buffer components were of reagent grade. The
synthesis of 1 has been previously reported.’

Absorption studies. The absorption titrations (generation of
the matrix for the ANN) were performed by keeping the
concentration of the H,:I solution constant (0.24 mM 1 and
0.01 mM 2) and adding both Ca(NOj3), and 3 in varying
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Table 1. (A) Concentration of citrate (mM) and calcium (mM) in the validation test points samples determined by the two-component sensing system and ANN
analysis. The reported values shown are the average value=*standard deviation of three measurements with the percent different shown in parenthesis.
(B) Concentration of citrate (mM) and calcium (mM) in various flavored Smirnoff® vodkas determined by ANN, and NMR

(A) Prepared samples

Real values

[citrate] (mM) [calcium] (mM)

Predicted values

[citrate] (mM) [calcium] (mM)

0.00 0.10 0.03%0.01 0.12x0.04
0.20 0.40 0.15£0.03 0.37+0.01
0.40 0.15 0.35+0.005 0.12+0.002
0.60 0.20 0.56£0.01 0.18%0.001
0.80 0.35 0.87£0.05 0.30+0.01
(B) Vodkas
Flavor Predicted values NMR determined values

[citrate] (mM)

Citrus twist 0.98
Orange 0.31
Vanilla 1.18
Green apple 1.55
Raspberry 1.37

[calcium] (mM) [citrate] (mM) (15% error)

0.72 0.90
0.21 0.44
0.74 1.16
0.02 1.04
0.11 1.30

concentrations to separate solutions of 1:2. All solutions
were buffered at pH 7.5 with HEPES buffer (10 mM) in 75%
Smirnoff Vodka in water (v/v). Nine separate solutions were
made that contained 0.5 mL of the H,I solution, 100 WL of a
10 mM Ca(NO3),, and aliquots of a 20 mM Citrate solution
brought to a volume of 1.00 mL with the solvent system
described above. Next, nine other solutions were prepared in
the same manner without the addition of the Ca(NOs),
solution. For the ‘leave-one-out’ strategy, four test solutions
were prepared to evaluate the network’s ability to
extrapolate and are shown in Table 1.

For the analysis of flavored vodkas, sample preparation
proceeded by taking an aliquot (25.0 mL) of each flavored
vodka and evaporating any ethanol. To each residue,
100 mL of deionized water was added and each sample
was lyophilized to remove the water. The residue was then
dissolved in 25% (v/v) water in vodka (5.0 mL). An aliquot
(100 L) of this beverage solution was added to the sensing
ensemble (0.2 mM 1 and 0.01 mM 2) and brought to a total
volume of 1.00 mL. An absorbance value was recorded
three times for each sample and the corresponding citrate
concentration and calcium value were obtained from the
matrix (Table 1A). The final values reported in Table 1A
were obtained by multiplying the value determined from the
ANN by the dilution factor.

Artificial neural network processing. Processing of the
UV-Vis measurements was accomplished using Statistica

CH,N(CH,CO3)

Scheme 1. General molecular structure of the host 1 and the indicator
(xylenol orange) 2.

Artificial Neural Network software (version 5.5) for
the multi-layered perceptron (MLP) analysis. No pre-
processing of the data was attempted.

3. Results and discussion

The host (1 or H) and indicator (I), xylenol orange (2), were
chosen for this study due to their established affinities for
citrate (3) and calcium (Ca(Il)), respectively (Scheme 1).8
The presence of the guanidinium groups on 1 is known
to impart affinity to carboxylates,”°~!1? while the iminio-
diacetic acid moieties on 2 have been shown to bind divalent
cations like calcium.!3-1¢ Also, the indicator was chosen
due to the characteristic color change or A, shift observed
earlier in similar systems resulting in a larger dynamic range
with which to work.® The assay relies upon the differential
binding characteristics of the indicator, which binds both
host 1 and Ca(Il). Further, the binding is synergistic. The
binding of citrate to 1 releases 2 allowing it to bind Ca(II).
In addition, the binding of Ca(Il) to 2 frees up 1 to bind
citrate. All these events are in equilibrium in solution, as
described below.

The signaling mechanism envisioned is an indicator-
displacement assay which has often been utilized by the
Anslyn group.””~!? The signaling scheme is executed by
adding a host molecule to an indicator adorned with binding
groups similar in charge or geometry to the target analyte.
Once a host—indicator complex is formed, the analyte of
interest is introduced and the host—indicator equilibrium is
disrupted. As the analyte preferentially binds to the host, an
optically measurable response is observed and is attributed
to the changes in the microenvironment of the indicator in
the solution.

The training set (matrix) needed for the identification and
quantification of calcium and citrate was carried out by
obtaining UV —Visible spectra of a two-component sensing
ensemble of 1 and 2 in solution (Scheme 2). With this
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Scheme 2. Equilibria of the systems studied. H=host, C=citrate,
I=indicator. The primary equilibria between the host and citrate is boxed
for emphasis, but it is clear that a variety of interrelated equilibria are also
present in the solution.

approach, several absorbance measurements at different
wavelengths from a solution containing this sensing
ensemble can serve as unique data inputs (or a fingerprint
response) allowing for identification and quantification of
components present in the solution. In this regard, the
concentration of the host and indicator were kept constant
while separate UV —Visible spectra were obtained for each
addition of various amounts of calcium and citrate. Figure 1
is a general outline for the matrix of spectra obtained for the
training set.
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Figure 1. The approach taken to obtain data via UV —Vis spectroscopy for
the two-component sensing ensemble, where spectra were recorded at
various concentrations (mM) of calcium and citrate.
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Figure 2. Representative UV—Vis spectra of the indicator-displacement
assays created when a solution containing 1 (240 uM) and 2 (10 uM) is
titrated with various concentrations of calcium and 3 in 25% (v/v) vodka in
water with 10 mM HEPES buffer at pH 7.5. [(-) calcium at 400 uM and
citrate at 100 pM] and [(- -) calcium at 50 uM and citrate at 600 uM]
Inside tick marks on the x-axis illustrate the 25 wavelengths chosen to use in
the ANN analysis.

Eighty discrete spectra resulted by systematically changing
the concentrations of calcium in 50 uM increments ranging
between 0 and 400 uM and also changing the concen-
trations of citrate in 100 wM increments ranging between 0
and 800 wM. An example of the spectral difference between
the binding of varying ratios of calcium and citrate to 1 and
2 is illustrated in Figure 2. These two spectra show that a
unique response is detected when a compleximetric dye is
combined with a synthetic receptor upon exposure to
mixtures of the two different analytes. The solvent used
for these solutions was a 25% (v/v) vodka in aqueous
buffered solutions so that possible interfering components in
the unflavored vodka would be accounted for within the
training set.

As shown in Scheme 2, the equilibria of this system are
complex. The indicator binds two hosts and two calciums,
and citrate and calcium also interact. Detection of these
complexes would normally prove to be difficult because
many of the species that may exist in the solution do not
contain chromophoric groups for optical monitoring by
UV -Visible or fluorescence spectroscopy. In fact, only the
presence of the complexometric dye allows for optical
monitoring of the events occurring in the solution. However,
the spectrophotometric changes that occur upon introduc-
tion of different analytes to the solution are subtle (Fig. 2)
and these subtle differences can be extracted quantitatively
through the application of pattern recognition.

Supervised learning with pattern recognition protocols was
accomplished using multi-layer perceptron (MLP) artificial
neural networks (ANN).!”~!° The diagram in Figure 3
illustrates the typical organization of the components within
a multilayer ANN. The structure of an ANN can be tailored
to the problem being solved. For our purposes, the number
of units in the input layer is equal to the number of
wavelengths taken from each UV - Visible spectrum in the
training set. The output layers are chosen to be equal to the
number of predictions desired from the network. For our
studies, the network is expected to predict the concen-
trations of calcium and citrate. The intermediate layers
(‘hidden layers’) positioned between the input layers and the
output layers were selected to be half the number of the
input layers. The connections between each of the layers
(Fig. 3) allow for each component (or neuron) to interact
with each other and extend the ability of the network to

Input Layers
(ABS @ each )

Hidden Layers
(processing nodes)

Output Layer
(concentrations)

Figure 3. General representation of the multilayer ANN used for the
analysis of flavored vodkas. The ANN is composed of an input layer, a
variable number of hidden layers, and an output layer.
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generate more complex algorithms for a range of difficult
applications.

With the network trained, ‘unknowns’ or inputs not present
in the matrix can be supplied into the trained network so that
the previously formed algorithms can attempt to calculate
an output value. All but five of the spectra were used to
train the ANN using 25 wavelengths from each titration.
The five traces that were omitted from the training set were
utilized as test points to evaluate the network’s ability to
extrapolate and therefore gage the performance of the ANN
matrix. The percent difference within the matrix for the
output values of the test points ranged from 3.4 to 30%
(Table 1A).

Despite the fact that the relative error associated with the
output values for each test point was less than 30%,
independent verification of the individual citrate concen-
trations of the unknowns reported for the flavored vodka
samples was carried out by other techniques. Given the good
correlation between citrate and Ca(IT) found in Table 1, we
focus here on one component for verification: citrate. The
amount of citrate present in each flavored vodka sample was
accomplished by a NMR analysis. As shown in Table 1B,
verification of citrate concentrations by NMR gave values
with a percent difference ranging from 1.7% for the vanilla
flavor to 33% for the green apple flavor. These values are in
good agreement, but it is believed that increasing the
number of spectra obtained for the training matrix would
improve the accuracy and reduce the error of the
methodology presented here. In addition, it was surprising
to us that the values found by both the ANN and the NMR
methods indicate more citrate in the vanilla, green apple,
and raspberry flavored vodkas compared to the orange and
citrus twist flavors.

In conclusion, the combination of indicator-displacement
assays and a synthetic host with pattern recognition
algorithms generates a useful sensing strategy. It allows
for an analysis of a system involving multiple equilibria to
be performed, because the patterns present is the UV—Vis
spectra are the sole data needed for the training set. Also,
we successfully extended our differential sensing methods
to encompass a practical application for the analysis of
commercially flavored vodkas by using a synergistic assay
that relies on the cross reactivity of the indicator. This
detection method demonstrated that concentrations of more
than one analyte can be determined in a single analysis
without the need for an array or sophisticated
instrumentation.
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